INTERNATIONAL BACCALAUREATE

Mathematics: applications and interpretation MAI

EXERCISES [MAI 5.10-5.13] BASIC INTEGRALS – AREAS

Compiled by Christos Nikolaidis

A. Paper 1 questions (SHORT

INDEFINITE INTEGRALS

[Maximum mark: 20]
 Find the following integrals

 $\int 20x^9 dx$

 $\int x^{-9} dx$

 $\int 16x^{-9}dx$

 $\int (x^3 + x^2 + x + 3) dx$

 $\int (4x^3 - 12x^2 + 6x + 3)dx$

 $\int (x^{-3} + x^{-2} + 3) dx$

 $\int (4x^{-3} - 12x^{-2} + 3)dx$

 $\int edx$

 $\int \pi^2 dx$

2. [Maximum mark: 30]

Find the following integrals (modify the expressions first, if necessary).

$$\int \left(\frac{4}{x^3} - \frac{12}{x^2} + 3\right) dx =$$

$$\int \left(\frac{8}{x^5} - \frac{12}{x^3} + 6x\right) dx =$$

$$\int \left(\frac{x^3}{4} - \frac{2x^2}{3} - \frac{x}{7} + 3\right) dx =$$

$$\int \left(\frac{1}{4x^3} - \frac{2}{3x^2} + 3\right) dx =$$

$$\int \left(\frac{3}{4x^3} - \frac{2x^2}{3}\right) dx =$$

$$\int (x+1)(x+2)dx =$$

$$\int (2x^2 + 5x + 1)(3x - 4)dx =$$

$$\int \frac{2x^5 + 5x^3 + x^2}{x^2} dx =$$

$$\int \frac{2x^3 + 5x + 1}{x^3} dx =$$

$$\int \frac{2x^7 + 5x + 4}{3x^3} \, dx =$$

[] []	vimum mork: 71
	ximum mark: 7]
Lei	$f''(x) = 12x^2$.
/ \	
(a) (b)	Find $f'(x)$, given that $f'(0) = 3$. Find $f(x)$, given that $f(0) = 2$.
	Find $f(x)$, given that $f(0) = 2$.
	Find $f(x)$, given that $f(0) = 2$.
	Find $f(x)$, given that $f(0) = 2$.
	Find $f(x)$, given that $f(0) = 2$.
	Find $f(x)$, given that $f(0) = 2$.
	Find $f(x)$, given that $f(0) = 2$.
	Find $f(x)$, given that $f(0) = 2$.
	Find $f(x)$, given that $f(0) = 2$.

. е с <i>)</i>	$f'(x) = 1 - x^2$. Given that $f(3) = 0$, find $f(x)$.
is g	imum mark: 5] given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of x
is g	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of x
is ç	
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of x
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of x
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of x
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of x
is (given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of x
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of $x = 2$.
is (given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of $x = 2$.
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of $x = 2$.
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of $x = 2$.
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of $x = 2$.
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of $x = 2$.
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of $x = 2$.
is ç	given that $\frac{dy}{dx} = x^3 + 2x - 1$ and that $y = 13$ when $x = 2$. Find y in terms of $x = 2$.

7.	[Maximum mark: 5]
	The curve $y = f(x)$ passes through the point (2, 6). Given that $\frac{dy}{dx} = 3x^2 - 5$, find y in
	terms of x .
8.	[Maximum mark: 5]
8.	
8.	[Maximum mark: 5]
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is $f'(x) = -2x + 3$. Find the equation of the curve.
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is $f'(x) = -2x + 3$. Find the equation of the curve.
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is $f'(x) = -2x + 3$. Find the equation of the curve.
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is $f'(x) = -2x + 3$. Find the equation of the curve.
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is $f'(x) = -2x + 3$. Find the equation of the curve.
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is $f'(x) = -2x + 3$. Find the equation of the curve.
8.	[Maximum mark: 5] A curve with equation $y = f(x)$ passes through the point (1, 1). Its gradient function is $f'(x) = -2x + 3$. Find the equation of the curve.

DEFINITE INTEGRALS

9. [Maximum mark: 30]

Calculate the following definite integrals. Show your work analytically.

Calculate the following definite integrals. Onew your work analytically.
$\int_0^1 x^9 dx$
$\int_0^1 20x^9 dx$
$\int_{1}^{2} x^{-2} dx$
$\int_{1}^{2} 8x^{-3} dx$
$\int_0^2 6x^2 dx$
$\int_{1}^{2} 6x^{2} dx$
$\int_0^1 (2x+3)dx$
$\int_{1}^{2} (2x+3)dx$
$\int_0^2 (2x+3)dx$
$\int_{-2}^{2} (2x+3) dx$
$\int_0^{10} x dx$
$\int_0^{10} 5 dx$
$\int_0^{10} dx$
$\int_{4}^{10} dx$
$\int_a^b dx$

10.	[Max	timum mark: 6]	
	(a)	Find $\int_1^a (3x^2+1) dx$ in terms of a .	[3]
	(b)	Find $\int_1^b \left(6x^2 + \frac{1}{x^2}\right) dx$ in terms of b .	[3]
11.	_	rimum mark: 6]	
	Find	the real number $k > 1$ for which $\int_{1}^{k} \left(1 + \frac{1}{x^2}\right) dx = \frac{3}{2}$.	

PROPERTIES OF DEFINITE INTEGRALS (Questions 12-17 mainly for HL)

12. [Maximum mark: 20]

Let
$$\int_{5}^{7} f(x)dx = 8$$
 and $\int_{5}^{7} g(x)dx = 2$

Find the value of the following expressions

$\int_{7}^{5} f(x)dx$
$\int_{5}^{7} 3f(x)dx$
$\int_{5}^{7} \frac{f(x)}{4} dx$
$\int_{5}^{7} (f(x)+1)dx$
$\int_{5}^{7} (f(x) + x) dx$
$\int_5^6 f(x)dx + \int_6^7 f(x)dx$
$\int_{5}^{7} [f(x) + g(x)] dx$
$\int_{5}^{7} [f(x) - g(x)] dx$
$\int_{5}^{7} \left[2f(x) + 3g(x)\right] dx$
$\int_5^7 [f(x) - 4g(x)] dx$

13. [Maximum mark: 6]

Giver	that $\int_{1}^{3} g(x)$	leduce the v	1	1	

υL	f be a function such that $\int_0^3 f(x) dx = 8$.
a)	Deduce the value of (i) $\int_0^3 2f(x) dx$ (ii) $\int_0^3 (f(x)+2) dx$
0)	Write down the value of the expression $\int_0^1 f(x)dx + \int_1^3 f(x)dx$.
Иах	kimum mark: 6]
	simum mark: 6] en that $\int_1^3 f(x) dx = 5$, deduce the value of (i) $\int_1^3 2f(x) dx$ (ii) $\int_1^3 \left(3x^2 + f(x)\right) dx$.
	en that $\int_1^3 f(x) dx = 5$, deduce the value of (i) $\int_1^3 2f(x) dx$ (ii) $\int_1^3 \left(3x^2 + f(x)\right) dx$.
	en that $\int_1^3 f(x) dx = 5$, deduce the value of (i) $\int_1^3 2f(x) dx$ (ii) $\int_1^3 \left(3x^2 + f(x)\right) dx$.
	en that $\int_1^3 f(x) dx = 5$, deduce the value of (i) $\int_1^3 2f(x) dx$ (ii) $\int_1^3 \left(3x^2 + f(x)\right) dx$.
	en that $\int_{1}^{3} f(x) dx = 5$, deduce the value of (i) $\int_{1}^{3} 2f(x) dx$ (ii) $\int_{1}^{3} (3x^{2} + f(x)) dx$.
	en that $\int_1^3 f(x) dx = 5$, deduce the value of (i) $\int_1^3 2f(x) dx$ (ii) $\int_1^3 \left(3x^2 + f(x)\right) dx$.
	an that $\int_1^3 f(x) dx = 5$, deduce the value of (i) $\int_1^3 2f(x) dx$ (ii) $\int_1^3 \left(3x^2 + f(x)\right) dx$.

1	6.	[Maximum mark: 6	31
	0.	IIVIAXIIIIUIII IIIAIK. (וכ

The table shows some values of two functions, f, g and of their derivatives f', g':

х	1	2	3	4
f(x)	5	4	-1	3
g(x)	1	-2	2	-5
f'(x)	5	6	0	7
g'(x)	-6	-4	-3	4

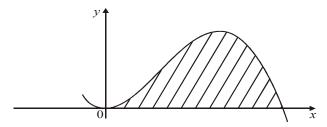
(a)	Calculate $\frac{d}{dx}(f(x)+g(x))$, when $x=4$;	[2]
-----	--	-----

(b)	Calculate $\int_{1}^{3} (g'(x) + 6) dx.$	[4]

17. [Maximum mark: 7]

Let
$$\int_{1}^{5} 3 f(x) dx = 12$$
.

(a) Show that
$$\int_{5}^{1} f(x) dx = -4$$
 [3]
(b) Find the value of $\int_{1}^{2} (x+f(x)) dx + \int_{2}^{5} (x+f(x)) dx$ [4]


[4]

Find the value of $\int_1^1 (x+f(x))dx + \int_2^1 (x+f(x))dx$

AREAS

18. [Maximum mark: 4]

The diagram shows part of the graph of $y = 12x^2(1-x)$.

(a)	Write down an integral which represents the area of the shaded region.	[2]
(b)	Find the area of the shaded region.	[2]

19. [Maximum mark: 5]

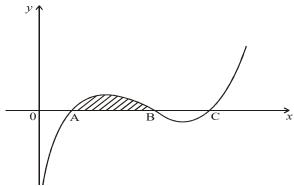
Let R be the region between the curve $y = -3x^2 + 6x$ and x - axis.

(a) Write down an integral which represents the area of the region R. [3]

[2]

(b) Find the area of the region R.

Lot 1	
Let J	$f(x) = -3x^2 + 8x$ and $g(x) = 2x$. Let R be the region between the two curves.
(a)	Sketch a diagram showing the graphs of f and g and shade the region R .
(b)	Write down an expression which represents the area of the region <i>R</i> .
(c)	Find the area of the region <i>R</i> .
[Maxi	mum mark: 6]
Let f	
	$f(x) = -3x^2 + 8x$ and $g(x) = 2x$. Let S be the region enclosed by the two curves
	$G(x) = -3x^2 + 8x$ and $g(x) = 2x$. Let S be the region enclosed by the two curves x - axis.
and a	$G(x) = -3x^2 + 8x$ and $g(x) = 2x$. Let S be the region enclosed by the two curves x - axis. Write down an expression which represents the area of the region S .
and a	x - axis.
and a	x - axis. Write down an expression which represents the area of the region <i>S</i> .
and a	x - axis. Write down an expression which represents the area of the region <i>S</i> .
and a	x - axis. Write down an expression which represents the area of the region <i>S</i> .
and a	x - axis. Write down an expression which represents the area of the region <i>S</i> . Find the area of the region <i>S</i> .
and a	w- axis. Write down an expression which represents the area of the region S. Find the area of the region S.
and a	w- axis. Write down an expression which represents the area of the region S. Find the area of the region S.
and α	w- axis. Write down an expression which represents the area of the region S. Find the area of the region S.
and α	w- axis. Write down an expression which represents the area of the region S. Find the area of the region S.
and α	w- axis. Write down an expression which represents the area of the region S. Find the area of the region S.
and α	w- axis. Write down an expression which represents the area of the region S. Find the area of the region S.


22.

[Max	ximum mark: 9]	
(a)	Find the area between the curve $y = 2 + x - x^2$ and x -axis.	[3]
(b)	Find the area between the curve $y = 3 + x - x^2$ and $y = 3 - 3x + x^2$	[4]
(c)	Find the area between the curve $y = 2 + x - x^2$ and $y = 2 - 3x + x^2$	[2]

23. [Maximum mark: 6]

The figure below shows part of the curve $y = x^3 - 7x^2 + 14x - 7$.

The curve crosses the x-axis at the points A, B and C.

- (a) Find the x-coordinate of A and the x-coordinate of B.
- (b) Write down an expression for the area of the shaded region. [2]

[2]

(c) Find the area of the shaded region. [2]

24. [Maximum mark: 4]

Find the **total** area enclosed by the curve $y = x^3 - 7x^2 + 14x - 7$ and x-axis.

TRAPEZOIDAL RULE

25. [Maximum mark: 10]

The region R between the curve $y = -3x^2 + 6x$ and x - axis is given by the definite integral

$$A = \int_{0}^{2} (6x - 3x^{2}) dx$$

	U C C C C C C C C C C C C C C C C C C C	
(a)	Write down the exact value of A .	[1]
(b)	Use the trapezoidal rule to find approximations for A .	
	(i) with $n=2$ intervals	
	(ii) with $n = 4$ intervals	
	(iii) with interval length $h=0.4$	[9]

26.	[Maximum	mark.	91
4 0.	IIVIAAIIIIUIII	main.	IJΙ

Let $f(x) = \ln x$

(c)

(a) Complete the following table of values, using 3 s.f.

х	1	1.5	2	2.5	3
f(x)			0.693	0.916	

[2]

- (b) Find an approximation for the definite integral $\int_{1}^{3} \ln x dx$ using the trapezoidal rule
 - (i) with n = 2 intervals
 - (ii) with n = 4 intervals

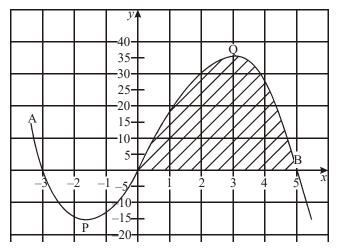
[5]

[2]

The exact value of the definite integral $\int_{1}^{3} \ln x dx$ is $3 \ln 3 - 2$.

Find the percentage error for your estimation in question (b)(ii)

В.	per 2 questions (LONG)			
<u></u> 27.	Maximum mark: 12]			
21.	the function f is such that $f''(x) = 2x - 2$.			
	Then the graph of f is drawn, it has a minimum point at $(3, -7)$.			
	Show that $f'(x) = x^2 - 2x - 3$ and hence find $f(x)$.	[6]		
	Find $f(0)$, $f(-1)$ and $f'(-1)$	[3]		
	Hence sketch the graph of f labelling it with the information obtained in part (b).			
	Note: It is not necessary to find the coordinates of the points where the graph	[0]		
	cuts the x -axis.)			
		. •		
		. •		
		•		


		[MAI 5.10-5.13] BASIC INTEGRALS AREAS	
28.	[Max	kimum mark: 14]	
_0.	-	sider the function f with second derivative $f''(x) = 3x - 1$. The graph of f has a	
	11111111	mum point at $A(2, 4)$ and a maximum point at B .	
	(a)	Given that $f'(x) = \frac{3}{2}x^2 - x + p$, show that $p = -4$.	[4]
	(b)	Find $f(x)$.	[7]
	(c)	Use $f'(x)$ to find the <i>x</i> -coordinate of B.	[3]

29.

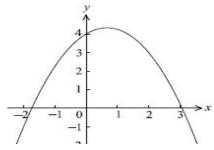
[Maximum mark: 15]			
A cu	rve ha	as equation $y = x(x-4)^2$.	
(a)	Write	e down the x -intercepts of the curve.	[2]
(b)	Find	$\frac{\mathrm{d}y}{\mathrm{d}x}$.	[3]
(c)	Use	$\frac{\mathrm{d}y}{\mathrm{d}x}$ to find the coordinates of (i) the maximum point; (ii) the minimum point;	[4]
(d)	Use	your answers above to sketch a graph of the curve for $0 \le x \le 4$	[3]
(e) (i) On your sketch indicate by shading the region whose area is given by the		On your sketch indicate by shading the region whose area is given by the	
		following integral: $\int_0^4 x(x-4)^2 dx$	
	(ii)	Explain, using your answer to part (a), why the value of this integral is greater than 0 but less than 40.	[3]

30. [Maximum mark: 15]

The diagram below shows part of the graph of the function $f:x\mapsto -x^3+2x^2+15x$.

The graph intercepts the x-axis at A(-3,0), B(5,0) and the origin, O. There is a minimum point at P and a maximum point at Q.

- (a) Write down the x- Intercepts of the graph. [2]
- (b) (i) Find the **exact** values of x at which f'(x) = 0;
 - (ii) Find the value of the function at Q. [7]
- (c) (i) Find the equation of the tangent to the graph of f at O.
 - (ii) This tangent cuts the graph of f at point R. Give the x-coordinate of R. [4]
- (d) Determine the area of the shaded region. [2]

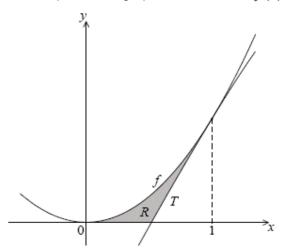

31. [Maximum mark: 12]

Let
$$f(x) = -\frac{3}{4}x^2 + x + 4$$
.

- (a) (i) Find the equation of the normal to the curve of f at (2, 3).
 - (ii) This normal intersects the curve of f at (2, 3) and at one other point P. Find the x-coordinate of P.

[9]

Part of the graph of f is given below.


(b) Let R be the region under the curve of f from x = -1 to x = 2.

Write down an expression for the area of <i>R</i> and hence evaluate this area.	[3]

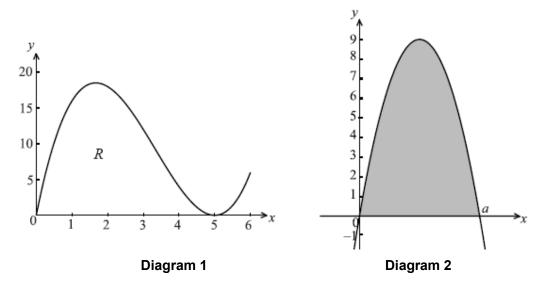
32 .	[Max	kimum mark: 16]	
	The	function f is defined by $f: x \mapsto -0.5x^2 + 2x + 2.5$.	
	(a)	Write down (i) $f'(x)$; (ii) $f'(0)$	[2]
	(b)	Let ${\it N}$ be the normal to the curve at the point where the graph intercepts the ${\it y}$ -	
		axis. Show that the equation of <i>N</i> may be written as $y = -0.5x + 2.5$.	[3]
		Let $g:x\mapsto -0.5x+2.5$	
	(c)	(i) Find the solutions of $f(x) = g(x)$.	
		(ii) Hence find the coordinates of the other point of intersection of the normal and the curve.	[6]
	(d)	Let <i>R</i> be the region enclosed between the curve and <i>N</i> .	[-]
	. ,	(i) Write down an expression for the area of <i>R</i> .	
		(ii) Hence write down the area of <i>R</i> .	[5]

33. [Maximum mark: 16]

The following diagram shows part of the graph of the function $f(x) = 2x^2$.

The line T is the tangent to the graph of f at x = 1.

- (a) Show that the equation of *T* is y = 4x 2. [5]
- (b) Find the x-intercept of T. [2]


[9]

- (c) The shaded region R is enclosed by the graph of f, the line T, and the x-axis.
 - (i) Write down an expression for the area of *R*.

(ii)	Find the area of <i>R</i> .

34. [Maximum mark: 10]

Let $f(x) = x(x-5)^2$, for $0 \le x \le 6$. The diagram 1 shows the graph of f.

Let R be the region enclosed by the x-axis and the curve of f.

The graph of g crosses the x-axis when x = a.

- (a) Find the area of R. [3]
- (b) The diagram 2 shows a part of the graph of a quadratic function g(x) = x(a-x).

The area of the shaded region is equal to the area of $\it R$. Find the value of $\it a$.

[7]

.....